This International Student Edition is for use outside of the U.S.

Grob's BASIC EIECTRONICS

Mitchel E. Schultz

Grob's Basic Electronics

Grob's Basic Electronics

13th Edition

Mitchel E. Schultz
Western Technical College

Mc
 Graw
 Hill

GROB'S BASIC ELECTRONICS

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright ©2021 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on acid-free paper
123456789 LWI 2423222120
ISBN 978-1-260-57144-8
MHID 1-260-57144-0

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.
The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

Dedication

This book is dedicated to all of the students I have had the honor of teaching over the span of my career. Your passion and level of commitment to learning has truly been inspiring.

Brief Contents

1	Introduction to Powers of 102
Chapter 1	Electricity 22
Chapter 2	Resistors 56
Chapter 3	Ohm's Law 80
Chapter 4	Series Circuits 112
Chapter 5	Parallel Circuits 146
Chapter 6	Series-Parallel Circuits 178
Chapter 7	Voltage Dividers and Current Dividers 214
Chapter 8	Analog and Digital Multimeters 238
Chapter 9	Kirchhoff's Laws 274
Chapter 10	Network Theorems 298
Chapter 11	Conductors and Insulators 330
Chapter 12	Batteries 360
Chapter 13	Magnetism 396
Chapter 14	Electromagnetism 416
Chapter 15	Alternating Voltage and Current 450
Chapter 16	Capacitance 494
Chapter 17	Capacitive Reactance 534
Chapter 18	Capacitive Circuits 556
Chapter 19	Inductance 582
Chapter 20	Inductive Reactance 628
Chapter 21	Inductive Circuits 650
Chapter 22	$R C$ and L / R Time Constants 678
Chapter 23	Alternating Current Circuits 712
Chapter 24	Complex Numbers for AC Circuits 742
Chapter 25	Resonance 772
Chapter 26	Filters 808
Chapter 27	Three-Phase AC Power Systems 852

of 1022
Chapter 2 Resistors80
Chapter 4 Series Circuits146
Chapter 6 Series-Parallel Circuits214
Chapter 8 Analog and Digital Multimeters 238C 10Network Theorems298
Chapter 11Batteries396
Chapter 14Alternating Voltage and Current450
Chapter 16 Capacitance534
Chapter 18 Capacitive Circuits 556
Chapter 19Inductive Reactance628
Chapter 21$R C$ and L / R Time Constants712
Chapter 24 Complex Numbers for AC Circuits 742
Chapter 25Filters 808
Chapter 27 Three-Phase AC Power Systems 852

Chapter 28	Diodes and Diode Applications 884
Chapter 29	Bipolar Junction Transistors 932
Chapter 30	Transistor Amplifiers 966
Chapter 31	Field Effect Transistors 1008
Chapter 32	Power Amplifiers 1048
Chapter 33	Thyristors 1080
Chapter 34	Operational Amplifiers 1098
Appendix A	Electrical Symbols and Abbreviations 1150
Appendix B	Solder and the Soldering Process 1153
Appendix C	Listing of Preferred Resistance Values 1160
Appendix D	Component Schematic Symbols 1161
Appendix E	Using the Oscilloscope 1167
Appendix F	Introduction to Multisim 1182
Appendix G	Electrostatic Discharge (ESD) 1224
Glossary	1227
Answers	Self-Tests 1236
Answers	Odd-Numbered Problems and Critical Thinking Problems 1242
Index	1265

Contents

Preface xix
Electric Shock—Dangers, Precautions, and First Aid xxix
Introduction to Powers of 102

I-1 Scientific Notation 4
I-2 Engineering Notation and Metric Prefixes 6

I-3 Converting between Metric Prefixes 10

I-4 Addition and Subtraction Involving Powers of 10 Notation 11

I-5 Multiplication and Division Involving Powers of 10 Notation 12

I-6 Reciprocals with Powers of 1013
I-7 Squaring Numbers Expressed in Powers of 10 Notation 14

I-8 Square Roots of Numbers Expressed in Powers of 10 Notation 14
I-9 The Scientific Calculator 15
Summary 17

Chapter 1 Electricity 22

1-1 Negative and Positive Polarities 24
1-2 Electrons and Protons in the Atom 24
1-3 Structure of the Atom 27
1-4 The Coulomb Unit of Electric Charge 30
1-5 The Volt Unit of Potential Difference33

1-6 Charge in Motion Is
Current 35
1-7 Resistance Is Opposition to Current 38
1-8 The Closed Circuit 40
1-9 The Direction of Current 42
1-10 Direct Current (DC) and Alternating Current (AC) 45
1-11 Sources of Electricity 46
1-12 The Digital Multimeter 47
Summary 51

Chapter 2 Resistors 56

2-1	Types of Resistors 58	2-5	Power Rating of	
2-2	Resistor Color Coding 61		Resistors 68	
2-3	Variable Resistors 65	2-6	Resistor Troubles	69
2-4	Rheostats and Potentiometers 66	Summary 74		

Chapter 3 Ohm's Law 80

3-1 \quad The Current $/=V / R \quad 82$
3-2 \quad The Voltage $V=I R \quad 84$
3-3 The Resistance $R=V / l \quad 85$
3-4 Practical Units 86

Multiple and Submultiple Units86

3-6 The Linear Proportion between V and / 88
3-7 Electric Power 90 3-11 Electric Shock 99
3-8 Power Dissipation inResistance 94
3-9 Power Formulas 95
3-10 Choosing a Resistor for a Circuit 97
Chapter 4 Series Circuits 112
4-1 Why / Is the Same in All Parts of a Series Circuit 114
4-2 Total R Equals the Sum of All Series Resistances 116
4-3 Series / R Voltage Drops 118
4-4 Kirchhoff's Voltage Law (KVL) 119
4-5 Polarity of IRVoltage Drops 121
4-6 Total Power in a Series Circuit 122
3-12 Open-Circuit and Short-Circuit Troubles 100
Summary 103
Chapter 7 Voltage Dividers and Current
Chapter 7 Voltage Dividers and Current Dividers 214 Dividers 214
7-1 Series Voltage Dividers 216
7-2 Current Divider with Two Parallel Resistances 220
7-3 Current Division by Parallel Conductances 222 14 14
Series Voltage Div
with Parallel Load Current 223
Divider 225
Summary
Summary 227 227
Chapter 8 Analog and Digital Multimeters 238
8-1 Moving-Coil Meter 8-7
Digital Multimeter
(DMM) 255
8-3 Voltmeters 245
8-4 Loading Effect of a Voltmeter 248
8-5 Ohmmeters 250
8-6 Multimeters 253
Cumulative Review Summary Chapters 7to 8272
Chapter 9 Kirchhoff's Laws 274
9-1 Kirchhoff's Current Law 9-4 Node-Voltage Analysis 285
(KCL) 276
Kirchhoff's Voltage Law (KVL) 278 Summary 291
9-3 Method of Branch
Currents 281
Chapter 10 Network Theorems 298
10-1 Superposition Theorem 300 10-6
Thevenin-Norton
10-2 Thevenin's Theorem 301 Conversions 310
10-3 Thevenizing a Circuit with Two Voltage Sources 304
10-7 Conversion of Voltage andCurrent Sources 312
10-4 Thevenizing a Bridge
10-5 Norton's Theorem 307
Cumulative Review Summary Chapters 9 to 10 329
10-8 Millman's Theorem 314
10-9 T or Y and $\boldsymbol{\pi}$ or ΔConnections 316
Summary 321
Conductors and Insulators 330 Chapter 11

11-1	Function of the Conductor 332
11-2	Standard Wire Gage Sizes 333
$\mathbf{1 1 - 3}$	Types of Wire
Sonctors 335	

11-4 Connectors 337
11-5 Printed Circuit Board 338
11-6 Switches 339
11-7 Fuses 341
11-8 Wire Resistance 343
Conductors 335
11-9 Temperature Coefficient of Resistance 346
11-10 Ion Current in Liquids and Gases 348
11-11 Insulators 350

Chapter 15 Alternating Voltage and Current 450

15-1 Alternating Current
Applications 452

15-2 Alternating-Voltage
15-3 The Sine Wave 456
15-4 Alternating Current 457
15-5 Voltage and Current Values for a Sine Wave 458
15-6 Frequency 461

15-7 Period 463
15-8 Wavelength 464
15-9 Phase Angle 467
15-10 The Time Factor in Frequency and Phase 470
15-11 Alternating Current Circuits with Resistance 471
15-12 Nonsinusoidal AC Waveforms 473

15-13 Harmonic Frequencies 475
15-14 The 60-Hz AC Power Line 475

15-16 Three-Phase AC Power
480

Summary 484

15-15 Motors and Generators 478
Cumulative Review Summary Chapters 13 to 15492

Chapter 16 Capacitance 494

16-1 How Charge Is Stored in a Capacitor 496
16-2 Charging and Discharging a Capacitor 497
16-3 The Farad Unit of Capacitance 499
16-4 Typical Capacitors 503
16-5 Electrolytic Capacitors 508
16-6 Capacitor Coding 510
16-7 Parallel Capacitances 515
16-8 Series Capacitances 515
16-9 Energy Stored in Electrostati Field of Capacitance 517
16-10 Measuring and Testing Capacitors 518
16-11 Troubles in Capacitors 521
Summary 525
Chapter 17 Capacitive Reactance 534
17-1 Alternating Current in a Capacitive Circuit 536
17-2 The Amount of X_{C} Equals 1/(2 $\pi f C$) 537
17-3 Series and Parallel Capacitive Reactances 541
17-4 Ohm's Law Applied to X_{c} 542
17 Ohtis LawAppliedto C $_{\text {C }}$
Chapter 18 Capacitive Circuits 556
17-5 Applications of Capacitive Reactance 542
17-6 Sine-Wave Chargeand Discharge Current 543
Summary 548
18-1 Sine Wave v_{C} Lags i_{C} by 90́ 558
18-6 RF and AF Coupling Capacitors 568
18-2 $\quad X_{C}$ and R in Series 559
18-3 Impedance Z Triangle 561
18-4 RC Phase-Shifter Circuit 563
18-5 $\quad X_{C}$ and R in Parallel 564
Cumulative Review Summary Chapters 16 to 1858018-7 Capacitive VoltageDividers 56918-8 The General Case ofCapacitive Curr571
Summary 572
Chapter 19 Inductance 582
19-1 Induction by Alternating Current 584
19-2 Self-Inductance L 585
19-3 Self-Induced Voltage v_{L} 588
19-4 How v_{L} Opposes a Change in Current 589
19-5 Mutual Inductance L_{M} 590
19-6 Transformers 593
19-7 Transformer Ratings 599
19-8 ImpedanceTransformation 602
19-9 Core Losses 606
19-10 Types of Cores 607
19-11 Variable Inductance 608
19-12

19-15 Measuring and Testing Inductors 614
19-13 Energy in a Magnetic Field of Inductance 611
19-14 Stray Capacitiveand Inductive Effects 612612

Chapter 20 Inductive Reactance 628

20-1 How $X_{\llcorner }$Reduces the Amount of I 630
20-5 Applications of X_{L} for Different Frequencies 636 20-5
20-2 $\quad X_{\llcorner }=2 \pi f L$ 631
20-3 Series and Parallel Inductive Reactances 635
Summary 619
20-6 Waveshape of v_{L} Induced by Sine-Wave Current637
20-4 Ohm's Law Applied to X_{L} 635
Chapter 21 Inductive Circuits 650
21-1 Sine Wave i_{L} Lags V_{L} by $90^{\circ} 652$
21-2 $\quad X_{L}$ and R in Series 653
21-5 Q of a Coil 661
Summary 642 642
21-3 Impedance Z Triangle 655
21-4 $\quad X_{L}$ and R in Parallel 658
21-6 AF and RF Chokes 664
21-7 The General Caseof Inductive Voltage 666
Summary 668
Chapter $22 R C$ and L / R Time Constants 678
22-1 Response of Resistance Alone 680
22-2 L/RTime Constant 680
22-3 High Voltage Produced byOpening an RL Circuit 682
22-4 RCTime Constant 684
22-5 RC Charge and Discharge Curves 687
22-6 High Current Produced by Short-Circuiting an RC Circuit 688
22-7 RC Waveshapes 689
Cumulative Review Summary Chapters 19 to 22 71022-8 Long and Short TimeConstants 691
22-9 Charge and Dischargewith a Short RCTimeConstant 692
22-10 Long Time Constant for an $R C$ Coupling Circuit 693
22-11 Advanced Time Constant Analysis 695
22-12 Comparison of Reactance and Time Constant 698
Summary 701
Chapter 23 Alternating Current Circuits 712
23-1 AC Circuits with Resistance but No Reactance 714
23-2 Circuits with $X_{\llcorner }$Alone 715
23-3 Circuits with X_{c} Alone 716
23-4 Opposite Reactances Cancel 717
23-5 Series Reactance andResistance 719
23-6 Parallel Reactance andResistance 721
23-7 Series-Parallel Reactance and Resistance 723
23-8 Real Power 724
23-9 AC Meters 726
23-10 Wattmeters 727
23-11 Summary of Types of Ohms in AC Circuits 727
23-12 Summary of Types of Phasors in AC Circuits 728
Summary 733

Chapter 24 Complex Numbers for AC

Circuits 742

24-1

Positive and Negative
Numbers 744

24-2 The j Operator 744
24-3 Definition of a Complex
24-4 How Complex Numbers Are Applied to AC Circuits 746
24-5 Impedance in Complex
24-6 Operations with Complex Numbers 749
24-7 Magnitude and Angle of a
Complex Number 750
24-8 Polar Form of Complex Numbers

24-9

Converting Polar to
Rectangular Form 753

24-10 Complex Numbers in Series AC Circuits 755
24-11 Complex Numbers in Parallel AC Circuits 757
24-12 Combining Two Complex Branch Impedances 759
24-13 Combining Complex Branch Currents 760
24-14 Parallel Circuit with Three Complex Branches 761
Summary 763
Cumulative Review Summary Chapters 23 to 24770

Chapter 25 Resonance 772

25-1 The Resonance Effect 774
25-2 Series Resonance 774
25-3 Parallel Resonance 778
25-4 Resonant Frequency $f_{r}=1 /(2 \pi \sqrt{L C}) 781$
25-5 Q Magnification Factor of a Resonant Circuit 785
25-6 Bandwidth of a Resonant
Circuit 789
25-7 Tuning 793
25-8 Mistuning 795
25-9 Analysis of ParallelResonant Circuits 796
25-10 Damping of ParallelResonant Circuits 797
25-11
Resonant Circuit 799
Summary 800

Chapter 26 Filters 808

26-1 Examples of Filtering 810
26-2 Direct Current Combined with Alternating Current 810
26-3 Transformer Coupling 813
26-4 Capacitive Coupling 814
26-5 Bypass Capacitors 817
26-6 Filter Circuits 819
26-7 Low-Pass Filters 820
Cumulative Review Summary Chapters 25 to 26850
26-8 High-Pass Filters 821
26-9 Analyzing Filter Circuits 822
26-10 Decibels and Frequency
Response Curves 831
26-11 Resonant Filters 838
26-12 Interference Filters 840
Summary 842
Chapter 27Three-Phase AC Power Systems
$\begin{array}{ll}\text { Three-Phase AC } \\ \text { 27-1 } & \begin{array}{l}\text { Three-Phase AC } \\ \text { Generators 854 }\end{array} \\ \text { 27-2 } & \begin{array}{l}\text { The Wye (Y)-Connected }\end{array}\end{array}$ $\begin{array}{ll}\text { Three-Phase AC } \\ \text { 27-1 } & \begin{array}{l}\text { Three-Phase AC } \\ \text { Generators 854 }\end{array} \\ \text { 27-2 } & \begin{array}{l}\text { The Wye (Y)-Connected }\end{array}\end{array}$ $\begin{array}{ll}\text { Three-Phase AC } \\ \text { 27-1 } & \begin{array}{l}\text { Three-Phase AC } \\ \text { Generators 854 }\end{array} \\ \text { 27-2 } & \begin{array}{l}\text { The Wye (Y)-Connected }\end{array}\end{array}$ $\begin{array}{ll}\text { Three-Phase AC } \\ \text { 27-1 } & \begin{array}{l}\text { Three-Phase AC } \\ \text { Generators 854 }\end{array} \\ \text { 27-2 } & \begin{array}{l}\text { The Wye (Y)-Connected }\end{array}\end{array}$ $\begin{array}{ll}\text { Three-Phase AC } \\ \text { 27-1 } & \begin{array}{l}\text { Three-Phase AC } \\ \text { Generators 854 }\end{array} \\ \text { 27-2 } & \begin{array}{l}\text { The Wye (Y)-Connected }\end{array}\end{array}$ Three-Phase Generator

The Delta (Δ)-Connected Three-Phase Generator 860
27-4 Three-Phase Source/LoadConfigurations 863
Chapter 28 Diodes and Diode Applications 884
28-1 Semiconductor Materials 886
28-2 The $p-n$ Junction Diode 888
28-3 Volt-Ampere Characteristic Curve 891
28-4 Diode Approximations 894
28-5 Diode Ratings 897
28-6 Rectifier Circuits 898
28-7 Special Diodes 916
Summary 924
Chapter 29 Bipolar Junction Transistors 932

29-1 Transistor Construction 934
29-2 Proper TransistorBiasing 936
29-3 Transistor Operating Regions 940
29-4 Transistor Ratings 942
29-5 Checking a Transistor with anOhmmeter 945
29-6 Transistor BiasingTechniques 947Summary 959
Chapter 30 Transistor Amplifiers 966

30-1 AC Resistance of a Diode 968
30-2 Small Signal Amplifier Operation 970
30-3 AC Equivalent Circuit ofa CE Amplifier974
30-4 Calculating the Voltage Gain, A_{v}, of a CE Amplifier 974
30-5 Calculating the Input and Output Impedances in a CE Amplifier 979
30-6 Amplifier 981
30-7 AC Analysis of an Emitter Follower 983
30-8 Emitter Follower Applications 988
30-9 Common-Base Amplifier 991
30-10 AC Analysis of a Common- Base Amplifier 992
Summary 998

Chapter 31 Field Effect Transistors 1008

31-1 JFETs and Their Characteristics 1010
31-2 JFET BiasingTechniques 1015
31-3 JFETAmplifiers 1021
31-4 MOSFETs and Their Characteristics 1029
Chapter 32 Power Amplifiers 1048
32-1 Classes of Operation 1050 32-4 Class C Amplifiers 1067
32-2 Class A Amplifiers 1051
32-3 Class B Push-Pull Amplifiers 1060Summary1073

Chapter 33 Thyristors 1080

33-1	Diacs 1082	$\mathbf{3 3 - 4}$	Unijunction Transistors	1089
$\mathbf{3 3 - 2}$	SCRs and Their Characteristics	1082	Summary	1093

Chapter 34

Operational Amplifiers 1098

34-1	Differential Amplifiers 1100	$\mathbf{3 4 - 4}$	Popular Op-Amp Circuits 1124	
34-2	Operational Amplifiers and Their Characteristics 1107	Summary 1140		

34-3 Op-Amp Circuits with Negative Feedback 1114

Appendix A Electrical Symbols and Abbreviations 1150

Appendix B Solder and the Soldering Process
 1153

Appendix C Listing of Preferred Resistance Values 1160
Appendix D Component Schematic Symbols 1161
Appendix E Using the Oscilloscope 1167
Appendix F Introduction to Multisim 1182
Appendix G Electrostatic Discharge (ESD) 1224
Glossary 1227
Answers Self-Tests 1236
Answers Odd-Numbered Problems and Critical Thinking Problems 1242
Index 1265

Preface

The thirteenth edition of Grob's Basic Electronics provides students and instructors with complete and comprehensive coverage of the fundamentals of electricity and electronics. The book is written for beginning students who have little or no experience and/or knowledge about the field of electronics. A basic understanding of algebra and trigonometry is helpful since several algebraic equations and rightangle trigonometry problems appear throughout the text.

The opening material in the book, titled "Introduction to Powers of 10," prepares students to work with numbers expressed in scientific and engineering notation as well as with the most common metric prefixes encountered in electronics. Students learn how to add, subtract, multiply, divide, square, and take the square root of numbers expressed in any form of powers of 10 notation.

Chapters 1 through 12 cover the basics of atomic structure, voltage, current, resistance, the resistor color code, Ohm's law, power, series circuits, parallel circuits, series-parallel (combination) circuits, voltage and current dividers, analog and digital meters, Kirchhoff's laws, network theorems, wire resistance, switches, insulators, primary and secondary cells, battery types, internal resistance, and maximum transfer of power. The first 12 chapters are considered DC chapters because the voltages and currents used in analyzing the circuits in these chapters are strictly DC.

Chapters 13 through 27 cover the basics of magnetism, electromagnetism, relays, alternating voltage and current, capacitance, capacitor types, capacitive reactance, capacitive circuits, inductance, transformers, inductive reactance, inductive circuits, $R C$ and L / R time constants, real power, apparent power, power factor, complex numbers, resonance, filters, and three-phase AC power systems. Chapters 13-27 are considered the AC chapters since the voltages and currents used in analyzing the circuits in these chapters are primarily AC.

Chapters 28 through 34 cover the basics of electronic devices, which include semiconductor physics, diode characteristics, diode testing, half-wave and full-wave rectifier circuits, the capacitor input filter, light-emitting diodes (LEDs), zener diodes, bipolar junction transistors, transistor biasing techniques, the commonemitter, common-collector, and common-base amplifiers, JFET and MOSFET characteristics, JFET amplifiers, MOSFET amplifiers, class A, class B and class C amplifiers, diacs, SCRs, triacs, UJTs, op-amp characteristics, inverting amplifiers, noninverting amplifiers, and nonlinear op-amp circuits. These seven additional chapters covering electronic devices may qualify this text for those who want to use it for DC fundamentals, AC fundamentals, as well as electronic devices.

Appendixes \mathbf{A} through \mathbf{G} serve as a resource for students seeking additional information on topics that may or may not be covered in the main part of the text. Appendix A provides a comprehensive list of electrical quantities and their symbols. It also includes a listing of the most popular multiple and submultiple units encountered in electronics as well as a listing of all the Greek letter symbols and their uses. Appendix B provides students with a comprehensive overview of solder and the soldering process. Appendix C provides a list of preferred values for resistors. The list of preferred values shows the multiple and submultiple values available for a specified tolerance. Appendix D provides a complete listing of electronic components and their respective schematic symbols. Appendix E provides students with an introduction on how to use an oscilloscope. Both analog and digital scopes are covered. Appendix F provides an extensive overview on the use of Multisim, which is an interactive circuit simulation software package that allows students to create and test
electronic circuits. Appendix F introduces students to the main features of Multisim that directly relate to their study of DC circuits, AC circuits, and electronic devices. Appendix G provides thorough coverage of the damaging effects of electrostatic discharge (ESD). It also discusses the proper techniques and procedures to follow to prevent ESD from damaging sensitive electronic components and assemblies.

What's New in the Thirteenth Edition of Grob's Basic Electronics?

The thirteenth edition continues to provide complete and comprehensive coverage of the basics of electricity and electronics. Several sections throughout the book have been updated to reflect the latest changes in the field of electronics, and new photos and illustrations have been added and/or replaced throughout the book, giving it a fresh, new look. Significant changes are outlined below.

A new section, "Electric Shock—Dangers, Precautions and First Aid," has been added. Detailed coverage of the dangers associated with electricity and electronic circuits is provided in this section. A guideline of safe practices for students to follow in a laboratory setting has also been included. This section also outlines the first aid and medical treatment procedures a person should follow if assisting someone who has experienced an electric shock.

Real-World Applications appearing throughout the book have been increased. These Real-World Applications validate the importance of the topics discussed within a given chapter.

- Chapter 1, Electricity: A new section, "Application in Understanding Alternative and Renewable Energy," has been added. This section defines alternative and renewable energy and discusses the basics of two common types, wind and solar energy. It also discusses the benefits and limitations of solar and wind energy.
- Chapter 2, Resistors: A new section, "Application in Understanding Varistors and Surge Protectors," has been added. In this section, the characteristics and ratings of metal-oxide varistors (MOVs) are thoroughly examined. Furthermore, this section explains how MOVs are used in surge protectors to prevent voltage spikes (power surges) from damaging sensitive electronic equipment plugged into the 120 V AC power line.
- Chapter 8, Analog and Digital Multimeters: A new section, "Application in Understanding Clamp-On Ammeters," has also been added. In this section, the controls, keys, and features of a typical clamp-on ammeter are discussed. Also discussed is the technique for using an AC line-splitter to measure the AC current in a power cord without splitting the conductors and/or breaking open the circuit.
- Chapter 15, Alternating Voltage and Current: New information on ground-fault circuit interrupters (GFCIs) has been added to the section "Application in Understanding the 120-V Duplex Receptacle." The basic operation, methods of testing, and safety benefits of GFCIs are thoroughly covered.

A new chapter, "Three Phase AC Power Systems," has been added. This chapter provides in-depth coverage of both wye (Y)- and delta (Δ)-connected three-phase AC generators. In this chapter, the relationship between the phase voltages and line voltages as well as the phase currents and line currents are thoroughly explained for a typical three-phase AC circuit. Also included are the four possible source/load configurations in three-phase AC power systems. The voltage, current, and power calculations for these configurations are thoroughly covered in this chapter. And finally, the advantages of using three-phase AC power versus single-phase AC power are explained in detail.

New appendix covering electrostatic discharge, abbreviated ESD. "Appendix G—Electrostatic Discharge (ESD)" provides detailed coverage of the causes of ESD as well as its damaging effects. Most importantly, this appendix provides detailed information on how to prevent the build-up of ESD and in turn how to prevent ESD from damaging sensitive electronic components and assemblies.

Other Significant Changes:

- Chapter 1, Electricity: A small section has been added regarding the magnetic field surrounding a current-carrying conductor.
- Chapter 11, Conductors and Insulators: A new section has been added on fuse ratings.
- Chapter 33, Thyristors: Several additions and/or clarifications were made regarding DIACs, SCRs, and TRIACs.
Many of the features from the previous editions have been retained for this edition. For example, the "Lab Application Assignments" at the end of each chapter and the MultiSim activities embedded within each chapter still remain. These features have and will continue to be a benefit to those students and instructors using the book.

Ancillary Package

The following supplements are available to support Grob's Basic Electronics, thirteenth edition.

Problems Manual for Use with Grob's Basic Electronics

This book, written by Mitchel E. Schultz, provides students and instructors with hundreds of additional practice problems for self-study, homework assignments, tests, and review. The book is organized to correlate with the first 27 chapters of the textbook, including the Introduction to Powers of 10 chapter. Each chapter contains a number of solved illustrative problems demonstrating step-by-step how representative problems on a particular topic are solved. Following the solved problems are sets of problems for the students to solve. The changes in the thirteenth edition include a new section on switches and switch applications in chapter 11, Conductors and Insulators. Also new to this edition is a brand-new chapter (chapter 27) on three-phase AC power systems. Included at the end of each chapter is a brief true/false self-test. The Problems Manual is a must-have for students requiring additional practice in solving both DC and AC circuits. It is important to note that this book can be used as a supplement with any textbook covering DC and AC circuit theory.

Experiments Manual for Grob's Basic Electronics

This lab manual provides students and instructors with easy-to-follow laboratory experiments. The experiments range from an introduction to laboratory equipment to experiments dealing with operational amplifiers. New to this edition is an experiment involving the Y-Y configuration in three-phase AC power systems. All experiments have been student tested to ensure their effectiveness. The lab book is organized to correlate with the topics covered in the text, by chapter.

All experiments have a Multisim activity that is to be done prior to the actual physical lab activity. Multisim files are part of the Instructor's Resources on Connect. This prepares students to work with circuit simulation software, and also to do "pre-lab" preparation before doing a physical lab exercise. Multisim coverage also reflects the widespread use of circuit simulation software in today's electronics industries.

create

Reviewers

Phillip Anderson
Muskegon Community College, MI
Michael Beavers
Lake Land College, IL
Jon Brutlag
Chippewa Valley Tech College, WI
Bruce Clemens
Ozarks Technical Community College, MO
Brian Goodman
Chippewa Valley Technical College, WI
Mohamad Haj-Mohamadi Alamance Community College, NC
Patrick Hoppe
Gateway Technical College, WI
Ali Khabari
Wentworth Institute of Technology, MA

McGraw-Hill Create ${ }^{\text {TM }}$

Craft your teaching resources to match the way you teach! With McGraw-Hill Create, http://create.mheducation.com, you can easily rearrange chapters, combine material from other content sources, and quickly upload content you have written, such as your course syllabus or teaching notes. Find the content you need in Create by searching through thousands of leading McGraw-Hill textbooks. Arrange your book to fit your teaching style. Create even allows you to personalize your book's appearance by selecting the cover and adding your name, school, and course information. Order a Create book and you'll receive a complimentary print review copy in three to five business days or a complimentary electronic review copy (eComp) via e-mail in minutes. Go to http://create.mheducation.com today and register to experience how McGraw-Hill Create empowers you to teach your students your way.

Acknowledgments

The thirteenth edition of Grob's Basic Electronics would not have been possible without the help of some very dedicated people. I would like to thank the highly professional staff of McGraw-Hill Higher Education, especially Tina Bower and Jane Mohr, and Manvir Singh of Aptara. Thank you for your patience and understanding during the long period of manuscript preparation.

Russ Leonard
Ferris State University, MI
Wang Ng
Sacramento City College, CA
Brian Ocfemia
Wichita Technical Institute, KS
Robert Pagel
Chippewa Valley Technical
College, WI
William Phillips
Madison Area Technical College, WI
Constantin Rasinariu
Columbia College Chicago, IL
LouEllen Ratliff
Pearl River Community College, MS
Phillip Serina
Kaplan Career Institute, OH
James Stack
Boise State University, ID
Andrew Tubesing
New Mexico Tech, NM

Mark Winans
Central Texas College, TX
Keith Casey
Wilkes Community College
Walter Craig
Southern University and A \& M College
Kenneth James
California State Long Beach
Marc Sillars Oakton Community College
Thomas Jones Randolph Community College
Christopher Ritter Cochise College
Michael Parker Los Medanos College
Garrett Hunter
Western Illinois University

I would also like to extend a very special thank you to Jon Burman and Kevin Hoeltzle for their input and expertise regarding both solar and wind energy. Your help in reviewing that portion of the manuscript was greatly appreciated. My hat goes off to both of you!

Mitchel E. Schultz

Affordability \& Outcomes = Academic Freedom!

You deserve choice, flexibility, and control. You know what's best for your students and selecting the course materials that will help them succeed should be in your hands.

That's why providing you with a wide range of options that lower costs and drive better outcomes is our highest priority.

18 connect

Make it simple, make it affordable.

Connect makes it easy with seamless integration using any of the major Learning Management SystemsBlackboard ${ }^{\circledR}$, Canvas, and D2L, among others-to let you organize your course in one convenient location. Give your students access to digital materials at a discount with our inclusive access program. Ask your McGraw-Hill representative for more information.

Learning for everyone.

McGraw-Hill works directly with Accessibility Services Departments and faculty to meet the learning needs of all students. Please contact your Accessibility Services office and ask them to email accessibility@mheducation.com, or visit www.mheducation.com/about/accessibility.html for more information.

Students—study more efficiently, retain more, and achieve better outcomes. Instructors-focus on what you love-teaching.

They'll thank you for it.

Study resources in Connect help your students be better prepared in less time. You can transform your class time from dull definitions to dynamic discussion. Hear from your peers about the benefits of Connect at www.mheducation.com/highered/connect/smartbook

Learn more at: www.mheducation.com/realvalue

Before you read

Chapter Introductions briefly outline the main chapter topics and concepts.

Chapter Outlines guide you through the material in the chapter ahead. The outlines breakdown the individual topics covered, and each outline is tied to a main heading to emphasize important topics throughout the chapter.


```
Chapter Outline
1-1 Negative and Positive Polarities
1-2 Electrons and Protons in the Atom
1-3 Structure of the Atom
1-4 The Coulomb Unit of Electric Charge
1-5 The Volt Unit of Potential Difference
1-6 Charge in Motion Is Current
1-7 Resistance Is Opposition to Current
```

```
1-8 The Closed Circuit
```

1-8 The Closed Circuit
1-9 The Direction of Current
1-9 The Direction of Current
1-10 Direct Current (DC) and Alternating
1-10 Direct Current (DC) and Alternating
Current (AC)
Current (AC)
1-11 Sources of Electricity
1-11 Sources of Electricity
1-12 The Digital Multimeter

```
1-12 The Digital Multimeter
```


Chapter Objectives

After studying this chapter, you should be able to

- List the two basic particles of electric charge.
- Describe the basic structure of the atom.
- Define the terms conductor, insulator, and semiconductor and give examples of each term.
- Define the coulomb unit of electric charge.
- Define potential difference and list its unit of measure
- Define current and list its unit of measure.
- Describe the difference between voltage and current.
- Define resistance and conductance and list the unit of each.
- List three important characteristics of an electric circuit.
- Define the difference between electron flow and conventional current.
- Describe the difference between direct and Describe the difference
alternating current.

Important Terms

Chapter Objectives organize and highlight the key concepts covered within the chapter text.

Important Terms help students identify key words at the beginning of each chapter. They are defined in the text, at the end of the chapter, and in the glossary.

While you read

Pioneers in Electronics offer
background information on the scientists and engineers whose theories and discoveries were instrumental in the development of electronics.

Good to Know boxes provide additional information in the margins of the text.

Section Self-Reviews allow students to check their understanding of the material just presented. They are located at the end of each section within a chapter, with answers at the end of the chapter.

PIONEERS \rightarrow IN ELECTRONICS French natural philosopher Charles
Augustin Coulomb (1736-1806) developed a method for measuring the force of attraction and repulsion between two electrically charged spheres. Coulomb established the law of inverse squares and defined the basic unit of charge quantity, the coulomb.

GOOD TO KNOW

As an aid for determining the added charge $(\pm Q$) to a neutral dielectric, use the following equation:
$\pm Q=\frac{\text { Number of electrons added or removed }}{6.25 \times 10^{10} \text { e electrons } / C}$

Figure 1-5 Physical force between electric charges. (o) Opposite charges attract. (b) Two negative charges repel each other. (c) Two positive charges repel.

repel in Fig. 1-5b, and two positive charges of the same value repel each other in Fig. 1-5c.

Polarity of a Charge
An electric charge must have either negative or positive polarity, labeled $-Q$ or $+Q$ with an excess of either electrons or protons. A neutral condition is considered zero charge. On this basis, consider the following examples, remembering that the electron is the basic particle of charge and the proton has exactly the same amount, although of opposite polarity

Example 1-1

A neutral dielectric has 12.5×10^{18} electrons added to it. What is its charge in coulombs?

ANSWER This number of electrons is double the charge of 1 C . Therefore, $-Q=2 \mathrm{C}$.

1-1 Self-Review
Answers at the end of the chapter.
a. Is the charge of an electron positive or negative
b Is the charge of a proton positive or negative?
c. Is it true or false that the neutral condition means equal positive and negative charges?

1-2 Electrons and Protons in the Atom
Although there are any number of possible methods by which electrons and protons might be grouped, they assemble in specific atomic combinations for a stable might be grouped, they assemble in specific atomic combinations for a stable
arrangement. (An atom is the smallest particle of the basic elements which forms

Examples throughout the text expand on key concepts and offer students a deeper understanding of complex material.

Multisim Icons, identify circuits for which there is a Multisim activity. Multisim files can be found on the Instructor Resources section for Connect.
then, is a voltage source, or a source of electromotive force (emf). The schematic symbol for a battery or DC voltage source is shown in Fig. 1-8b.
Sometimes the symbol E is used for emf, but the standard symbol V represents any potential difference. This applies either to the voltage generated by a source or to the voltage drop across a passive component such as a resistor.
It may be helpful to think of voltage as an electrical pressure or force. The higher the voltage, the more electrical pressure or force. The electrical pressure of voltage is in the form of the attraction and repulsion of an electric charge, such as an electron.

The general equation for any voltage can be stated as
$V=\frac{W}{Q}$
(1-1)
where V is the voltage in volts, W is the work or energy in joules, and Q is the charge in coulombs.
Let's take a look at an example.

Example
1-5
What is the output voltage of a battery that expends 3.6 J of energy in moving 0.5 C of charge?

ANSWER Use equation 1-1.

$$
v=\frac{W}{Q}
$$

After you've read

Application of Ohm's Law and Power Formulas

$$
\begin{aligned}
& \text { HOME APPLIANCES } \\
& \text { Every electrical appliance in our home has a nameplate attached } \\
& \text { to it. The nameplate provides important information about the } \\
& \text { appliance such as its make and model, its electrical specifications } \\
& \text { and the Underwriters Laboratories (UL) listing mark. The } \\
& \text { nameplate is usually located on the bottom or rear-side of the } \\
& \text { appliance. The electrical specifications listed are usually its } \\
& \text { power and voltage ratings. The voltage rating is the voltage at } \\
& \text { which the appliance is designed to operate. The power rating is } \\
& \text { the power dissipation of the appliance when the erated voltage is } \\
& \text { applied. With the rated voltage and power ratings listed on the } \\
& \text { nameplate, we can calculate the current drawn from the } \\
& \text { appliance when it's being used. To calculate the current }(1) \text { simply } \\
& \text { divide the power rating (} \text { (P) in watts by the voltage rating (} V \text {) } \\
& \text { in volts. As an example, suppose you want to know how much } \\
& \text { current your toaster draws when it's toasting your bread. To } \\
& \text { find the answer you will probably need to turn your toaster }
\end{aligned}
$$

by the toaster is calculated as follows

$$
I=\frac{P}{V}=\frac{850 \mathrm{~W}}{120 \mathrm{~V}}=7.083 \mathrm{~A}
$$

Some appliances in our homes have a voltage rating of 240 V rather than 120 V . These are typically the appliances with very igh power ratings. Some examples include: electric stoves,
electric clothes dryers, electric water heaters, and air conditioning units. These appliances may have power ratings as high as 7.2 kW or more. The reason the higher power appliances have a higher voltage rating is simple. At twice the voltage you only need half the current to obtain the desired power. With half as much current, the size of the conductors connecting the appliance to the power line can be kept much smaller. This mportant because a smaller diameter wire costs less and is

Real-world applications bring to life the concepts covered in a specific chapter.

Each chapter concludes with a
Summary, a comprehensive recap of the major points and takeaways.
\qquad

Summary

Related Formulas are a quick, easy way to locate the important formulas from the chapter.

Multiple-Choice Self-Tests at the end of every chapter allow for quick learning assessment. \qquad

Related Formulas

$1 \mathrm{C}=6.25 \times 10^{18}$ electrons	$Q=1 \times T$
$V=\frac{W}{Q}$	$R=1 / G$
$I=O / T$	$G=1 / R$

Self-Test

Answers at the back of the book.	4. The electron valence of a neutral copper atom is	7. In a metal conductor, such as a copper wire,
1. The most basic particle of negative charge is the	$\begin{aligned} & \text { a. }+1 \text {. } \\ & \text { b.o. } \end{aligned}$	a. positive ions are the moving charges that provide current.
a. coulomb.	c. ± 4.	b. free electrons are the moving charges that provide current.
c. proton.		c. there are no free electrons.
d. neutron.	5. The unit of potential difference is the	d. none of the above.
2. The coulomb is a unit of	a. volt.	8. A $100-\Omega$ resistor has a conductance,
a. electric charge.	b. ampere.	, of
b. potential difference.	c. siemens.	a. 0.01 s .
c. current.	d. coulomb.	b. 0.1 S.

1. The most basic particle of negative charge is the
a. coulomb.
c. proton
d. neutron.
2. The coulomb is a unit of
a. electric charge.
c. current.

b. o .
c. ± 4.
d. -1.
3. The unit of potential difference is
b. ampere.
c. siemens.
d. coulomb.
G. of
a. 0.01 s
0.001

Essay Questions

Name two good conductors, two good insulators, and two semiconductors
Th a metal conductor, what is a free electron?
3. What is the smallest unit of a compound with the same chemical characteristics?
4. Define the term ion.
5. How does the resistance of a conductor compare to that of an insulator?
6. Explain why potential difference is necessary to produce current in a circuit.

```
List three important characteristics of an electric
``` circuit.
8. Describe the difference between an open circuit and a short circuit.
9. Is the power line voltage available in our homes a DC or an \(A C\) voltage?
10. What is the mathematical relationship between resistance and conductance?
11. Briefly describe the electric field of a static charge.

SECTION 1-4 THE COULOMB UNIT OF ELECTRIC CHARGE
1-1 If \(31.25 \times 10^{18}\) electrons are removed from a neutral dielectric, how much charge is stored coulombs?

1-2 If \(18.75 \times 10^{18}\) electrons are added to a neutral dielectric, how much charge is stored in coulombs?
1-3 A dielectric with a positive charge of +5 C has \(18.75 \times\) \(0^{18}\) electrons added to it. What is the net charge of the dielectric in coulombs?
1-4 If \(93.75 \times 10^{18}\) electrons are removed from a neutral dielectric, how much charge is stored in coulombs?

1-5 If \(37.5 \times 10^{18}\) electrons are added to a neutral electric, how much charge is stored in coulombs?

SECTION 1-5 THE VOLT UNIT OF POTENTIAL difference
1-6 What is the output voltage of a battery if 10 J of energy
is expended in moving 1.25 C of charge? is expended in moving 1.25 C of charge?
1-7 What is the output voltage of a battery if 6) of energy is expended in moving 1 C of charge?
1-8 What is the output voltage of a battery if 12 of energy is expended in moving 1 C of charge?

1-9 How much is the potential difference between two points if 0.5) of energy is require
charge between the two points?
-10 How much energy is expended, in joules, if a voltage of 12 V moves 1.25 C of charge between two

SECTION 1-6 CHARGE IN MOTION IS CURRENT 1-11 A charge of 2 C moves past a given point every 0.5 s. How much is the current?
1-12 A charge of 1 C moves past a given point every 0.1 s How much is the current?
1-13 A charge of 0.05 C moves past a given point every 0.1 s. How much is the current?
1-14 A charge of 6 C moves past a given point every 0.3 s . How much is the current?
1-15 A charge of 0.1 C moves past a given point every 0.01 s .
How much is the current?
1-16 If a current of 1.5 A charges a dielectric for 5 s , how much charge is stored in the dielectric?
1-17 If a current of 500 mA charges a dielectric for 2 s , how much charge is stored in the dielectric?
1-18 If a current of \(200 \mu \mathrm{~A}\) charges a dielectric for 20 s , how much charge is stored in the dielectric?

SECTION 1-7 RESISTANCE IS OPPOSITION TO CURRENT
1-19 Calculate the resistance value in ohms for the following
conductance values: (a) 0.001 S (b) 0.01 S (c) 0.1 S (d) 1 S .
1-20 Calculate the resistance value in ohms for the following conductance values: (a) 0.002 S (b) 0.004 S (c) 0.00833
S (d) 0.25 S S (d) 0.25 s

1-21 Calculate the conductance value in siemens for each of
the following resistance values: (a) \(200 \Omega\) (b) \(100 \Omega\) (c) \(50 \Omega\) (d) \(25 \Omega\).

1-22 Calculate the conductance value in siemens for each of the
following resistance values: (a) \(1 \Omega\) (b) \(10 \mathrm{k} \Omega\) (c) \(40 \Omega\)
(d) \(0.5 \boldsymbol{\Omega}\).

Critical Thinking

1-23 Suppose that 1000 electrons are removed from a neutral dielectric. How much charge, in coulombs, is tored in the dielectric?
1-24 How long will it take an insulator that has a charge of +5 C to charge to +30 C if the charging current is 2 A ?

1-25 Assume that \(6.25 \times 10^{15}\) electrons flow past a given point in a conductor every 10 s . Calculate the current in amperes

1-26 The conductance of a wire at \(100^{\circ} \mathrm{C}\) is one-tenth its value at \(25^{\circ} \mathrm{C}\). If the wire resistance equals \(10 \Omega\)
calculate the resistance of the wire at \(100^{\circ} \mathrm{C}\).

\section*{Laboratory Application Assignment}

In your first lab application assignment you will use a DMM to measure the voltage, current, and resistance in Fig. 1-22. Refer to Section 1-12, "The Digital Multimeter," if necessary

Equipment: Obtain the following items from your instructor. Variable dc power supply
- DMM
- Connecting leads

\section*{Measuring Voltage}

Set the DMM to measure DC voltage. Be sure the meter leads are inserted into the correct jacks (red lead in the \(V \boldsymbol{\Omega}\) jack and the black lead in the COM jack). Also, be sure the voltmeter DMM test leads to the variable DC power supply as shown in Fig. 1-22a. Adjust the variable DC power supply voltage to any value between 5 and 15 V . Record your measured voltage. \(V=\square\) Note: Keep the power supply voltage set to

\section*{Measuring Resistanc}

Disconnect the meter leads from the power supply terminals, Set the DMM to measure resistance. Keep the meter leads in the same jacks you used for measuring voltage. Connect the Fig. 1-22b. Record your measured resistance.
\(R=\xlongequal{\text { Fig. 1-22b. Record your measured resistance. }}\) (The measured resistance will most likely be displayed as a decimal fraction in \(k \Omega\).)

\section*{Measuring Curren}

Set the DMM to measure DC current. Also, move the red test lead to the appropriate jack for measuring small DC currents (usually labeled mA). Turn off the variable DC power supply. Connect the red test lead of the DMM to the positive (+)
terminal of the variable \(D C\) power supply as shown in Fiq. terminal of the variable DC power supply as shown in Fig.
\(1-22 c\). Also, connect the black test lead of the DMM to one lead of the \(1 \mathrm{k} \Omega\) resistor as shown. Finally, connect the other lead of the resistor to the negative \((-)\) terminal of the variable \(D C\) power supply. Turn on the variable DC power supply. Record your measured current.
\(1=\)

Figure 1-22 Measuring electrical quantities. (a) Measuring voltage. (b) Measuring resistance. (c) Measuring current.

\section*{About the Author}

Mitchel E. Schultz is an instructor at Western Technical College in La Crosse, Wisconsin, where he has taught electronics for the past 31 years. Prior to teaching at Western, he taught electronics for 8 years at Riverland Community College in Austin, Minnesota. He has also provided training for a variety of different electronic industries over the past 39 years.

Before he began teaching, Mitchel worked for several years as an electronic technician. His primary work experience was in the field of electronic communication, which included designing, testing, and troubleshooting rf communications systems. Mitchel graduated in 1978 from Minnesota State, Southeast Technical College, where he earned an Associate's Degree in Electronics Technology. He also attended Winona State University, Mankato State University, and the University of Minnesota. He is an ISCET Certified Electronics Technician and also holds his Extra Class Amateur Radio License. Mitchel has authored and/or co-authored several other electronic textbooks which include Problems Manual for use with Grob's Basic Electronics, Electric Circuits: A Text and Software Problems Manual, Electronic Devices: A Text and Software Problems Manual, Basic Mathematics for Electricity and Electronics, and Shaum's Outline of Theory and Problems of Electronic Communication.

\section*{Electric Shock-Dangers, Precautions, and First Aid}

Electricity is a form of energy that provides an endless number of useful functions in our daily lives. However, no matter how useful electricity may be, it can also be very dangerous. Perhaps the greatest danger is from an electric shock. If a person comes into contact with a "live" conductor or circuit, it only takes a small amount of current through the human body to paralyze the victim, making it impossible for him or her to let go. A current in excessive of about \(\frac{1}{100}\) of an Ampere (A), which is the basic unit of current, is about all it takes. If the current approaches \(\frac{1}{10}\) of an Ampere, or more, the shock can be fatal. The danger of electric shock increases with higher voltages because a higher voltage can produce more current through the skin and internal organs. Lower voltages, such as those associated with AA or AAA batteries, for example, can be handled with little or no danger because the resistance of human skin is normally high enough to keep the current well below the threshold of sensation. However, when a person's skin is moist or cut, the resistance to the flow of current decreases drastically. When this happens, even moderate voltages can produce an electric shock. Therefore, safe practices must always be followed when working in and around electric circuits to avoid accidental electric shock, fires, and explosions.

\section*{Guideline of Safe Practices}

The following is a list of safe practices that will help protect you and your fellow classmates while performing experiments in the laboratory. These same rules apply to those individuals working in industry. It is a good idea to review these safe practices from time to time so that you are reminded of their importance.
1. Never work on electrical equipment and/or machinery if you are under the influence of either drugs or alcohol.
2. Never work on electrical equipment and/or machinery if the lighting is poor or insufficient.
3. Never work on electrical equipment and/or machinery if your shoes and/ or clothing are wet.
4. Wear rubber-soled shoes or stand on an insulated mat when working on electrical equipment.
5. If possible, never work alone.
6. Avoid wearing any metal objects such as bracelets, rings, necklaces, etc., when working in and around electric circuits.
7. Never assume that the power applied to a circuit is off! Either unplug the equipment you are working on or use a known-good meter to check for power.
8. Measure voltages with one hand in your pocket or behind your back when possible.
9. Do not remove safety grounds on three-prong power plugs and never use AC adapters to defeat the ground connection on any electrical equipment.
10. Power cords should always be checked before use. If the insulation is cracked or cut, they should not be used until they are properly repaired.```

